Lightweight XML-based query, integration and visualization of distributed multimodality brain imaging data

J.F. Brinkley, MD, PhD1,2,3, A.V. Poliakov, PhD1, E.B. Moore1, L.T. Detwiler, MS1, J.D. Franklin, MS1, D.P. Corina, PhD5, G.A. Ojemann, MD4

1Structural Informatics Group, Dept Biological Structure, 2Medical Education and Biomedical Informatics, 3Computer Science and Engineering, 4Neurosurgery, University of Washington, Seattle, Washington, 5Dept Linguistics, University of California at Davis, Davis, California

100.13

1. Introduction
With the proliferation of brain imaging modalities and the inability of any one lab to be expert in all modalities or to acquire sufficient data from a single population, there is a need to integrate distributed sources of brain imaging data. We have developed a "lightweight" approach to integration that does not require a central mediator.

2. Driving neuroscience problem
Language organization in the brain. Multiple types of data are acquired on patients undergoing neurosurgery for epilepsy. Each data type alone has shown correlations with behavioral and demographic factors. An interest is to integrate these separate sources in order to gain insights that could not be obtained from a single source alone.

3. Approach
Separately maintained local or remote data and knowledge sources are encapsulated in web services (WS), and made to appear as XML for access by a distributed XML-based query engine (DXQ). Distributed XML queries are dispatched to the separate data sources, the results or which are combined by DXQ, and then converted to various formats for visualization or offline analysis.

4. An example query: Is there any difference in CSM semantic naming errors in the temporal lobe for males versus females?

5. Express the query in a distributed form of XQuery

6. Dispatch the query components to separate data and knowledge sources

7. Find semantic naming errors

8. Find the parts of the temporal lobe

9. Find associated SUR results

10. Find images and 3-D models for visualization

11. Combine the individual results into a final XML document

12. Visualize the final XML results in multiple ways.

13. Conclusions
Example results show that the framework is in place for use in exploratory neuroscience research. The lightweight nature of the system should allow any web-encapsulated XML source to be added with minimal effort. The tradeoff is that users need to understand each source in detail and to know XQuery. Current research is addressing how to reduce this burden on the user. In addition, issues of interoperability are being addressed through ontologies like the FMA and a spatial normalization web service.

Funded by Human Brain Project grant DC02310